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a b s t r a c t 

The classical game-theoretical models described the conflict in fisheries arising from har- 

vesting a ‘common pool resource’ which without an efficient regulation leads to an over- 

exploitation of a renewable but not unlimited resource, known as the ‘tragedy of the com- 

mons’. Unlike these studies, the present paper deals with a marketing cooperative of micro 

or small enterprises in fishing industry, formed to negotiate a contracted price with large 

buyers, sharing risk among members of the cooperative. In the paper a game-theoretical 

model for the behaviour in this cooperative is set up. By the time of the actual commer- 

cialization of the product, the market price may be higher than what the cooperative can 

guarantee for members, negotiated on beforehand. Therefore some “unfaithful” members 

may be interested in selling at least a part of their product on the free market, the coop- 

erative, however, can punish them for this. This conflict is modelled with a multi-person 

normal form game. An evolutionary dynamics is proposed for the continuous change of 

the applied strategies, which in the long term leads to a particular Nash equilibrium, con- 

sidered the solution of the game. This strategy dynamics is continuously influenced by an 

“exosystem” describing the dynamics of fishing, based on a classical fishing effort model. 

This approach focuses only on the conflict within the marketing cooperative, since it is 

supposed that the single enterprises fish from independent resources. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction and preliminaries 

1.1. Introduction 

A cooperative in a given region may perform several activities, ranging from product processing to complex marketing,

see e.g. Cobia [1] . In particular, concerning fisheries, Freeman [2] gives a quick checklist of benefits and drawbacks of fishing

cooperatives. Micro and small enterprises often have difficulties in the commercialization of their product. 

Varga et al. [3] analyses a game-theoretical model for the behaviour in a marketing cooperative. The model studies a

‘one-shot game’, where at the end of a given production cycle, each member of the cooperative may decide to sell a part
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Fig. 1. Solutions of fishing effort model (1.1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of its production on the free market, if the market price is higher than the price set by the cooperative beforehand. In the

present study we will deal with a similar conflict, but in the context of fisheries based on a dynamic fishing effort model. 

An overview of different conflicts fishery management should face, is given e.g. in Caddy [4] , Cochrane et al. [5] , Castilla

and Defeo [6] . From these papers and the references therein it is clear that the classical game-theoretical conflict of exploit-

ing a common-pool resource has been widely studied over the last decades. Less attention has been paid to the marketing

conflicts related to fisheries. As examples of dealing with conflicts in oligopoly market environment, we recall Szidarovszky

and Okuguchi [7] and Bischi et al. [8] . 

In the present paper a model of marketing cooperative in fisheries is set up and studied, where in a given time period

a continuous production (harvested biomass) is being sold, under the condition that the actual offer is determined by the

dynamics of the harvested fish population. We emphasize that in the considered situation the game-theoretical conflict

arises on the marketing side, while the production in unit time L i ( t ) of each cooperative member i , comes from the solution

of the corresponding classical logistic fishing effort model (see e.g. Clark, [9] ). 

First we set up a normal form game to describe the considered conflict and apply a solution concept called attractive

solution, which is a special type of Nash equilibrium, introduced by Larbani [10] , see also Larbani and Lebbah [11] . Then

this solution concept is also studied in dynamic context, applying an evolutionary dynamics introduced by Garay [12] . The

reason for the application of this solution concept is that it takes into consideration that in the definition of an equilibrium

there is a distinguished player which in our case will be the cooperative, and the rest of the players will be its members. 

The paper is organized as follows. In the rest of Section 1 , a classical fishery model is recalled that will be a component

of the model we will set up. In Section 2 , following a general description of a marketing cooperative, the oligopoly market

environment is formalized, where the price is determined by the total offer. In Section 3 a time-dependent game-theoretical

model of the cooperative is introduced, and the existence of an attractive solution is proved. In Section 4 a model of dynamic

strategy choice is introduced and sufficient conditions are given under which the strategy choice of the players leads to

the desired attractive solution of the game. In Section 5 the strategy dynamics with discrete-time delivery of the catch is

shortly touched on. A Discussion and outlook section closes the main body of the paper. In the Appendix, for the reader’s

convenience some further details of the applied classical fishing effort model are recalled. 

Finally, we note that the simulations illustrating our theoretical study have been programmed in MatLab environment. 
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Fig. 2. Solutions of fish dynamics (4.6) for cooperative members, with β = 1 and z (0) < z ∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. A classical fishery model 

There are two basic types of classical fishery models. In both types the population dynamics of the considered fish

population is described by the logistic model. In the quota model the per unit time catch is independent of the population

biomass, with a constant h > 0 we have 

˙ z = rz 

(
1 − z 

K 

)
− h, 

where r and K are the Malthus parameter and the carrying capacity of the habitat, respectively. 

A disadvantage of the quota model is that even if an optimal strategy is to harvest the maximal biomass production at

the biomass level K /2, this is an unstable equilibrium of the model. In the dynamic harvesting model (1.1) below, instead,

the maximum biomass can be harvested at an asymptotically stable equilibrium, which, for the application, is an important

feature of the model. 

We will use the more flexible fishing effort model , where the per unit time catch is a function of the actual biomass. From

the different function types (see e.g. Marcos et al. [13] ; Kar [14] ), for our analytical study we will use the linear dependence

(see Schaefer [15] ) 

˙ z = rz 

(
1 − z 

K 

)
− Eρz, (1.1)

where E is the fishing effort (number of vessels or gears applied) and ρ is the catchability constant (the biomass caught

from unit stock by one vessel, in unit time). From Clark [9] , in the Appendix for the reader’s convenience we recall some

basic properties of this model, also giving the analytic solution to it. It can be shown that if E < 

r 
ρ , dynamics (1.1) has an

equilibrium 0 < z ∗ < K , which is attractor in the sense that from both initial values 0 < z (0) < z ∗ and z ∗ < z (0) < K , the

solution tends to z ∗, monotonically increasing in the first case, monotonically decreasing in the second one (see Appendix,

Fig. A1 .). In Fig. 1 , the numerical solution is illustrated with parameters: r = 0.2, K = 10 0 0, E = 1.1, ρ = 0.01. Now z ∗ = 950, and

with initial values z (0) = 150 < z ∗, z (0) = 1700 > z ∗ we obtain the solutions shown in Fig. 1 . 
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Fig. 3. Strategies dynamics, corresponding to fish dynamics of Fig. 2 . Members “escape” from the Nash strategies 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Description of a marketing cooperative of fishing enterprises 

2.1. General description of the considered marketing cooperative 

Let us assume that there are n micro or small enterprises fishing in different lakes of the same geographic area, with

somewhat similar ecologic conditions. (For an example, one can think of the volcanic lakes of the Latium region in Cen-

tral Italy, or the glacial lakes of Northern Italy). In fact, our modelling conditions will primarily correspond to freshwater

fisheries. For the sake of simplicity only one fish species will be included in our model. For such enterprises, because of

the relatively small quantity they can offer for sale, it is reasonable to form a marketing cooperative and find a large buyer

who would contract them, say for a time period ahead, at a negotiated price, for the total production of the cooperative.

However, in the meanwhile on the free market there may appear a price higher than the contracted price. Then the mem-

ber enterprises of the cooperative may be interested in selling a part of their production on the free market. If member i

sells the x i -part of its production to the cooperative, and x i < 1, then the cooperative may punish it for “unfaithfulness”. In

the formalization of this conflict as a normal form game, x i ∈ [0, 1] will be the strategy of member (player) i . With vector

x = ( x 1 , x 2 ,…, x n ) ∈ [0, 1] n , ( x , y ) ∈ [0, 1] n × [0, 1] will be called a multi-strategy. The cooperative as player n + 1, can threaten

the unfaithful with penalty proportional to its extra revenue, with rate y ∈ [0, 1]. The net revenue (payoff) of the players

will depend on the actual free market price formed by the outputs on oligopoly basis, as described in the next subsection. 

2.2. Cournot type oligopoly market with time-dependent outputs 

Since the quantity offered on the market by the enterprises will be proportional to the time-dependent catch obtained

from a dynamic fishery model (1.1) , below we will consider a time-dependent market situation. A market where the price

is defined by the total quantity of goods offered by several producers, is usually called Cournot type oligopoly market. 
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Fig. 4. Solutions of fish dynamics (4.6) , for β = 1 and z (0) > z ∗ . 

 

 

 

 

 

 

 

 

 

 

With a , b > 0, for all t ∈ [0, ∞ ] and multi-strategy ( x , y ) ∈ [0, 1] n × [0, 1] we define the time-dependent inverse demand

function (or price function) as a decreasing linear function of the total output: 

q (t, x ) := a − b 

n ∑ 

i =1 

L i (t)(1 − x i ) , (2.1)

where L i ( t ) is the time-dependent total catch shared by enterprise i , between the cooperative and the local market. Since in

lack of local product (when all L i ( t )-s are zero) the price is a , the latter can be considered as import price. Suppose that the

“import price” a is greater than the contracted price p (i.e. a > p ), functions L i ( t ) are bounded, and the oligopoly effect is

weak enough (i.e. b is small enough). Then the oligopoly model is considered consistent, i.e. for all ( t , x ) ∈ [0, ∞ ] × [0, 1] n

we have 

q ( t, x ) := a − b 

n ∑ 

i =1 

L i ( t ) ( 1 − x i ) > p. (2.2)

In particular, the inverse demand function is always positive, and the market price is attractive for the members of the

cooperative. 

3. Game-theoretical model of the conflict between the cooperative and its members 

3.1. A solution concept for N -person games 

Since in the considered conflict the cooperative has a distinguished role, we need a special solution concept for an N -

player game, called attractive solution (see e.g. Larbani [10] ) of the game, in the sense of the following definition. Consider

an N -player game where 

X is the strategy set of player i , 
i 
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Fig. 5. Strategy dynamics (4.3) –(4.4) , corresponding to fish dynamics of Fig. 4 , for z (0) > z ∗ . 

 

 

 

 

 

X := 

N ∏ 

i =1 

X i the set of multi-strategies, 

F i : X → R the payoff of player i , F : = ( F 1 ,…, F N ). 

Definition 1. Multi-strategy x 0 is said to be an attractive solution of the normal form game ( X , F ), if there exists a player

i ∈ 1 , N such that the following conditions are satisfied: 

A) F j ( x 1 , ..., x 
0 
i 
, ..., x N ) ≤ F j ( x 

0 ) , ( j ∈ 1 , N \{ i } , x k ∈ X k , k ∈ 1 , N \{ i } ) ; 
B) F i (x 0 

1 
, ..., x 

i 
, ..., x 0 

N 
) ≤ F i ( x 

0 ) , ( x i ∈ X i ) . 

Remark 1. If in condition A), for each j ∈ 1 , N \ { i } we choose x k := x 0 
k 

∈ X k for k ∈ 1 , N \ { i , j }, and an arbitrary x j ∈ X j , we obtain

that any attractive solution is a Nash equilibrium (NE), too. The interpretation of the distinguished player i is the following:

if player i sticks to his equilibrium strategy, the rest of the players cannot increase their payoff even if they deviate together

from their equilibrium strategies. In the context of our game, the distinguished player is the cooperative. 

3.2. Game model for the marketing cooperative 

Let c be the production cost per unit biomass, and β ≥ 1 a penalty parameter. For any t ∈ [0, ∞ ] and multi-strategy ( x ,

y ) ∈ [0, 1] n × [0, 1], the payoff (profit = revenue – cost – penalty) of player i is 

f i (t, x, y ) := [(p − c) x i L i (t) + (q (t, x ) − c)(1 − x i ) L i (t) − βy (q (t, x ) − p)(1 − x i ) L i (t)] 

= L i (t) { (p − c) x i + (1 − x i )[ q (t, x ) − c − βy (q (t, x ) − p)] } , (i ∈ 1 , n ) (3.1) 

and for player ( n + 1) the payoff is 

f n +1 (t, x, y ) := βy (q (t, x ) − p) 
n ∑ 

j=1 

L j (t)(1 − x j ) . (3.2) 
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Fig. 6. Solution of fish dynamics (4.6) , for β > 1 and z (0) < z ∗ . 

 

 

 

 

 

 

 

 

With notation f : = ( f 1 , f 2 ,..., f n + 1 ), for the description of the cooperative we have a time-dependent normal form game 

( [0 , 1] n × [0 , 1] , f ) . (3.3)

Solution of the game 

Let us fix a time moment t ∈ [0, ∞ ], and denote 1 : = (1, 1, ..., 1) ∈ R 

n . Then for any multi-strategy ( x , y ) ∈ [0, 1] n × [0, 1]

we easily obtain that 

f i (t, x, 1) − f i (t, 1 , 1) = L i (t)(1 − β)(1 − x i )(q (t, x ) − p) ≤ 0 , (3.4)

and 

f n +1 (t, 1 , y ) − f n +1 (t, 1 , 1) = βy (q (t, x ) − p) 
n ∑ 

j=1 

L j (t)(1 − 1) − β(q (t, x ) − p) 
n ∑ 

j=1 

L j (t)(1 − 1) = 0 . (3.5)

Furthermore, it is easy to see that under the conditions of Section 2.2 , in case β > 1, x ∈ [0, 1] n with x i < 1 for some

i ∈ 1 , n , inequality (3.4) is strict. 

Hence we obtain the following theorem. 

Theorem 1. Multi-strategy ( 1 , 1) is an attractive solution of game (3.3) . 

4. Strategy dynamics and stabilization of the cooperative 

Different evolutionary models are often used to describe economic behaviour, see e.g. Cressman et al. [16] . For the time-

invariant case, where the production of the members is constant and the game is played continuously with improving

strategies, we have already applied the so-called partial adaptive dynamics of Garay [12] . Below we will develop this dynam-

ics for our model of marketing cooperative in fisheries. 
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Fig. 7. Strategy dynamics corresponding to fish dynamics of Fig. 6 , tending to the attractive solution ( 1 , 1). 

 

 

 

 

4.1. Evolutionary strategy dynamics for the game of the cooperative 

The idea of the partial adaptive dynamics is that a player should continuously change his strategy in order to improve

his payoff, provided the other players maintain their strategies. To this end the time derivative of the strategy should be

proportional to the partial derivative of the player’s payoff with respect to his own strategy. 

With payoff functions of (3.1) –(3.2) the strategy dynamics for the time-dependent strategies x i ( t ) and y ( t ) of member i

and the cooperative, respectively, will be 

˙ x i = x i ( 1 − x i ) 
∂ 

∂ x i 
f i ( t, x, y ) 

(
i ∈ 1 , n 

)
, (4.1) 

˙ y = y (1 − y ) 
∂ 

∂y 
f n +1 (t, x, y ) . (4.2) 

From (3.1) and (3.2) we obtain 

∂ 

∂ x i 
f i (t, x, y ) = L i (t)(βy − 1)[ q (t, x ) − p − (1 − x i ) b L i (t)] (i ∈ 1 , n ) , 

∂ 

∂y 
f n +1 (t, x, y ) = β(q (t, x ) − p) 

n ∑ 

j=1 

L j (t)(1 − x j ) . 

For all ( t , x , y ) ∈ [0, ∞ ] × [0, 1] n × [0, 1], we get the strategy dynamics 

˙ x i = x i (1 − x i ) L i (t)(βy − 1)[ q (t, x ) − p − (1 − x i ) b L i (t)] 
(
i ∈ 1 , n 

)
, (4.3)

˙ y = y ( 1 − y ) β( q ( t, x ) − p ) 

n ∑ 

j=1 

L j ( t ) 
(
1 − x j 

)
. (4.4) 
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Fig. 8. Solution of fish dynamics (4.6) , for β > 1 and z (0) > z ∗ . 

 

 

 

 

 

 

 

 

 

Remark 2. The attractive solution ( 1 , 1) is obviously an equilibrium of dynamics (4.3) )–( 4.4 ), and the first two factors in the

right-hand sides ensure that dynamics (4.3) )–( 4.4 ) leaves the multi-strategy set [0, 1] n × [0, 1] positively invariant, which is

necessary for the consistency of the model. 

4.2. Asymptotic properties of the strategy dynamics 

For the following two theorems we suppose that the production in unit time L i ( t ) of each cooperative member i , comes

from the solution of the corresponding fishing effort model, 

L i ( t ) = E i ρi z i ( t ) ( t ≥ 0 ) (4.5)

Case of limited penalty ( β = 1) 

Now we will see that by limited penalty for unfaithfulness of the members, the cooperative cannot be stabilized. 

Theorem 2. Suppose that β = 1, and the oligopoly effect is weak enough (parameter b in the inverse demand function is

small enough). Then attractive solution ( 1 , 1) of the game described above is an unstable equilibrium of dynamics (4.3) )–

( 4.4 ). 

Proof. Since now for ( t , x , y ) ∈ [0, ∞ ] × [0, 1] n × [0, 1] in Eq. (4.3) obviously βy − 1 < 0, from (4.5) we have L i ( t ) > 0, and

we need to check the sign of the term […] in (4.3) . In addition, solutions z i ( t ) of the fishing effort equations are bounded

from above (see Appendix, (A.4) ). Therefore, L i ( t ) = E i ρ i z i ( t ) ( t ≥ 0) is also bounded from above. Now since a > p is supposed,

similarly to the reasoning of Section 2.2 for the consistence of the oligopoly market, we obtain that for b sufficiently small

we have 

q ( t, x ) − p − ( 1 − x i ) b L i ( t ) = a − b 

[ 

n ∑ 

j=1 

L j ( t ) 
(
1 − x j 

)
− L i ( t ) ( 1 − x i ) 

] 

− p > 0 

for ( t , x ) ∈ [0, ∞ [ × ]0, 1] n . 
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Fig. 9. Strategy dynamics corresponding to fish dynamics of Fig. 8 , tending to the attractive solution ( 1 , 1). 

 

 

 

 

 

 

 

 

 

 

 

Since βy − 1 < 0, the right-hand side of Eq. (4.3) is negative, ( x ( t ), y ( t )) will diverge from dynamic equilibrium (and also

NE) ( 1 , 1). 

Example 1. For an illustration let us consider a marketing cooperative of three small enterprises, fishing the same species

in three different lakes, according to the fishing effort model (1.1) , 

˙ z i = r i z i 

(
1 − z i 

K i 

)
− E i ρi z i 

(
i ∈ 1 , 3 

)
, (4.6) 

where the parameters are K 1 = 1100; K 2 = 10 0 0; K 3 = 1050; r 1 = 0.25; r 2 = 0.21; r 2 = 0.23; ρ1 = 0.01; ρ2 = 0.015; ρ3 = 0.013;

E 1 = 2; E 2 = 1; E 3 = 3. Furthermore, the parameters of the game model are β = 1; p = 1.5; a = 2.5; b = 0.0087. In Figs. 2 and

3 we illustrate Theorem 2 , with z ∗ = (969, 952.38, 871.96). Set z (0) = (450, 450, 450) for Fig. 2 , and x (0) = (0.5, 0.7, 0.8);

y(0) = 0.9 for Fig. 3 . Then we obviously have z i (0) < z ∗
i 
. 

The corresponding development of strategy dynamics is shown in Fig. 3 . 

Next, with z (0 ) = (970, 970, 970), we have z (0) > z ∗. Theorem 2 is illustrated in Figs. 4 and 5 , with results analogous to

Figs. 2 and 3 . 

Case of effective penalty ( β > 1) 

Now we will see that the effective penalty for unfaithfulness can stabilize the cooperative, since the multi-strategy will

then tend to a limit where, under the effective threat by the cooperative, all members are to complete faithful. 

Theorem 3. If the penalty is effective ( β > 1), and the oligopoly effect is weak enough, then any solution of the strategy

dynamics starting from ( x (0), y (0)) in [0, 1] n × [1/ β , 1], will tend to the attractive solution ( 1 , 1) of the game (i.e. dynamic

equilibrium ( 1 , 1) is an attractor for dynamics (4.3) )–( 4.4 )). 

Proof. Now in [0, 1] n × [1/ β , 1], by the sign reasoning of the proof of the previous theorem, for b small enough we obtain

that the right-hand side of Eq. (4.3) will be positive, because now y > 1/ β . Hence x i is strictly increasing, and so is y because

of the positivity of the right-hand side of Eq. (4.4) . Thus there exists lim 

t→∞ 

( x ( t) , y ( t) ) = ( x ∗, y ∗) ∈ [0 , 1] 
n ×[1 /β, 1 ] . 
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Fig. 10. Strategy dynamics for the case of “real-time delivery”, with z (0) < z ∗ in the fish dynamics. 

 

 

 

 

 

 

It is clear that if to Eqs. (4.3) and (4.4) we join the population dynamic equations 

˙ z i = r i z i 

(
1 − z i 

K i 

)
− E i ρi z i 

(
i ∈ 1 , n 

)
to system (4.3) )–( 4.4 ) by the substitution L i ( t ) = E i ρ i z i ( t ) ( t ≥ 0), we obtain an autonomous system for ( x , y , z ) of the form 

˙ x = u ( x, y, z ) 
˙ y = v ( x, y, z ) 
˙ z = w ( x, y, z ) 

} 

(4.7)

with z : = ( z 1 , z 2 ,..., z n ). As it is known (see Appendix, (A.4) ), from every initial population density z i (0) ∈ ]0, K [, z i tends to

the equilibrium: lim 

t→∞ 

z i (t) = z ∗
i 
. Thus we have lim 

t→∞ 

( x ( t) , y ( t) , z( t) ) = ( x ∗, y ∗, z ∗) ∈ ]0 , 1 ] 
n ×]1 /β, 1 ] ×]0 , K[ . We will show that

( x ∗, y ∗, z ∗) is an equilibrium of system (4.7) . Indeed, lim 

t→∞ 

˙ x (t) = lim 

t→∞ 

u (x (t) , y (t) , z(t)) = u ( x ∗, y ∗, z ∗) . Hence we get 

lim 

t→∞ 

1 

t 

t ∫ 
0 

˙ x (s ) ds = lim 

t→∞ 

1 

t 
[ x (t) − x (0)] = u ( x ∗, y ∗, z ∗) = 0 , 

where boundedness of x ( t )( t ≥ 0) was applied. We similarly obtain v ( x ∗, y ∗, z ∗) = 0 and w ( x ∗, y ∗, z ∗) = 0. It is easy to see that

( x ∗, y ∗) = ( 1 , 1). Indeed, suppose that for some i , inequality x ∗
i 

< 1 holds. Then 

0 = u i ( x 
∗, y ∗, z ∗) = x ∗

i 

(
1 − x ∗

i 

)
E i ρi z 

∗
i ( βy ∗ − 1 ) [

a − b 
n ∑ 

j=1 

E j ρ j z 
∗
j 

(
1 − x ∗

j 

)
− p − b E i ρi z 

∗
i 

(
1 − x ∗

i 

)]
> 0 

, 

which is a contradiction. Similar reasoning leads to y ∗
i 

= 1 . 

Example 2. For an illustration of Theorem 3 , we consider the parameter system of Example 1 , except β = 1.15. In Figs. 6 –9

we show how the effective penalty stabilizes the cooperative: now the strategy dynamics leads to the attractive solution
( 1 , 1) of game (3.3) , which, as we have seen in Section 3 , is a particular NE. 
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Fig. 11. Strategy dynamics for the case of “discrete-time” delivery, with z (0) < z ∗ in the fish dynamics. 

 

 

 

 

 

 

 

 

 

5. Strategy dynamics with discrete-time delivery 

In this section we suppose that instead of selling the captured fish immediately, the enterprises process and accumulate

and sell them deep frozen. We want to see how much this change may also influence the cooperative and its members in

their behaviour (strategy choice) according to strategy dynamics (4.3) )–( 4.4 ). To this end, counting with half month accu-

mulation periods of length �, we consider M periods in the time interval [0, T ], with T = M �. Let us calculate the total catch

of cooperative member i , during the time period [ m �, ( m + 1) �]: 

L m 

i = 

∫ (m +1)�

m �
E i ρi z i (t) dt ( m = 0 , 1 , . . . , M − 1 ) , 

corresponding to the fishing effort model, see Appendix, (A .5) and (A .6) . 

By the substitution of L m 

i 
, from the strategy dynamics and the fishing effort models, we obtain an autonomous system

for ( x m , y m , z m ) of the form 

˙ x m = u ( x m , y m , z m ) 
˙ y m = v ( x m , y m , z m ) 
˙ z m = w ( x m , y m , z m ) 

} 

(5.1) 

At the end of each period, the endpoint of the solution of (5.1) is taken as initial value for the next period. The following

example illustrates the behaviour of the above model. 

Example 3. Starting from basic parameter system of Example 2 , with β = 1.15. For the case of “real-time delivery” we obtain

strategy dynamics as shown in Fig. 10 . For the illustration of the above construction, let us set �= 0.5 (say half a month),

M = 10, hence T = 5. Fig. 11 suggests that in case of “discrete-time delivery” the strategy dynamics also tends to the original
attractive solution ( 1, 1) of the game, however the convergence is slower than in the case of “real-time delivery”. 
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6. Discussion and outlook 

It has been shown that an earlier approach of the authors concerning the conflict between a marketing cooperative and

its unfaithful members, can be extended to the case when the offer in the oligopoly market where the unfaithful members

sell a part of their production, is determined by an “exosystem” describing a time-varying production, in our case it is the

dynamic model of fishing. 

An important point is that, unlike the previous model, where the parameters of the resulting multi-person game were

constant, in the present case, due to the time-varying oligopoly market, they change with time, according to a fishing effort

model. Another specificity of the considered situation is, that the harvested fish preferably should be commercialized “in real

time”, that is immediately. In the case of continuous time-dependent delivery, we have also proved that the corresponding

time-varying partial adaptive dynamics is also appropriate for the description of the development of the strategy choice. In

case of an effective punishment for unfaithfulness, the appropriate time-dependent strategy choice also tends to the solution

of the game. 

In addition to the “real-time delivery”, we have also adapted our model to the case when deep frozen fish is commer-

cialized, operating with discrete-time sale, accumulating the product for given time periods. All this also means that our

model may also be valid for certain production and commercialization of certain long season vegetables, sold either fresh,

i.e. in “real time”, or deep frozen, i.e. in discrete-time moments. 

As a further development of the presented model, the conflict between a marketing cooperative and its members could

be combined with the conflict of several enterprises fishing in the same water. 

Finally, we note that the methods of mathematical systems theory and optimal control models (see e.g. Guiro et al. [17] ;

Gámez et al. [18] ) can be also applied in the fishery management context of the present paper. 
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Appendix 

For the reader convenience below we summarize some basics of the classical fishing effort model by Schaefer [15] , see

also Clark [9] , adding some results of analytical calculations used in our simulations. 

Starting from the logistic model, suppose that the fishing is proportional to the present biomass (stock) of a given species.

Then the fishing effort model considered in Section 1.2 is 

˙ z = rz 

(
1 − z 

K 

)
− Eρz. (A.1)

We have two equilibrium points, the trivial equilibrium 0 and with the condition E < 

r 
ρ , the non trivial equilibrium 

z ∗ = K 

(
1 − Eρ

r 

)
> 0 , with 0 < z ∗ < K. 

To each effort E , there corresponds a sustainable catch: H(E) = Eρz ∗ = EρK( 1 − Eρ
r ) . H ( E ) = 0 is a quadratic equation,

with roots 0 and 

r 
ρ , and the function H attains a maximum at E = 

r 
2 ρ , that is, H( r 

2 ρ ) = 

rK 
4 = M is the maximum production

of biomass (or maximum sustainable yield, MSY) of the population described with the logistic dynamics. Therefore, if we

start fishing in the equilibrium, the effort r 
2 ρ is an optimal and sustainable strategy. A routine calculation shows that, in

correspondence with Fig. 1 of Section 1.2 , if 0 < z (0) < z ∗, the solution of (A.1) is 

z(t) = 

z ∗·z(0) 
z ∗−z(0) 

z(0) 
z ∗−z(0) 

+ e −(r−Eρ) t 
(t ≥ 0) , (A.2)

and if z ∗ < z (0) < K , the solution of (A.1) is 

z(t) = 

z ∗·z(0) 
z(0) −z ∗

z(0) 
z(0) −z ∗ − e −(r−Eρ) t 

(t ≥ 0) . (A.3)

Obviously, in both cases we have 

lim 

t→∞ 

z(t) = z ∗. (A.4)

As Fig. A1 shows, the convergence is monotonically increasing in the first case, and monotonically decreasing in the

second one. Hence the solutions in both cases are also bounded. 

For Section 5 , concerning the case of discrete-time delivery, from (A.2) and (A.3) , we easily calculate the total biomass

caught in time interval [ m �, ( m + 1) �]: 
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Fig. A1. Convergence of biomass to equilibrium in the fishing effort model. 

 

 

 

 

 

 

 

 

For 0 < z < z ∗, ∫ (m +1)�

m �
z(t) dt = 

z ∗

r − Eρ
· ln 

z(0) 
z ∗−z(0) 

+ e −(r−Eρ)(m +1)�

e −(r−Eρ) ·
[

z(0) 
z ∗−z(0) 

+ e −(r−Eρ) m �
] , (A.5) 

and for z ∗ < z < K , ∫ (m +1)�

m �
z(t) dt = 

z ∗

r − Eρ
· ln 

z(0) 
z(0) −z ∗ − e −(r−Eρ)(m +1)�

e −(r−Eρ) ·
[

z(0) 
z(0) −z ∗ − e −(r−Eρ) m �

] . (A.6) 
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